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Abstract 

 

 

Advanced therapies represent a paradigm shift. They offer potentially curative solutions to life-

threatening diseases through a single administration. However, this paradigm shift poses 

unprecedented challenges to the current model of drug access and reimbursement developed 

for the management of conventional therapies, where reimbursement typically occurs at the 

time of therapy administration. In this paper, we identify the key determinants of the paradigm 

shift and propose a new reimbursement model for advanced therapies. The proposed model 

relies on managed entry agreements to address payer uncertainty and is based on conditional 

and deferred payments. The potential impact of such deferred payments on spending is 

estimated through horizon scanning. Finally, we propose the establishment of a dedicated 

fund to enable timely access to advanced therapies while ensuring the sustainability of the 

impact on pharmaceutical expenditure. 

 

 

 

 

 

  

                                                
1 This contribution is partly based on Nutarelli, Riccaboni, Van Dick (2024), Advanced Therapy 
Medicinal Products: Pricing and Reimbursement Challenges and Potential Solutions, mimeo. 

The study was conducted with the unconditional support of #VITA. 
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Introduction 

 

Reimbursement for advanced therapies poses unprecedented challenges for regulatory 

authorities, mainly due to the unique characteristics of these therapies (Overbeeke et al. 2021; 

Michelsen et al. 2020). Although numerous advanced therapy medicinal products (ATMPs) 

have been positively assessed by the European Medicines Agency (Iglesias-Lopez, Agustı, et 

al. 2021; Garcıa-González et al. 2021), only a limited number of ATMPs have been 

successfully reimbursed by the major European regulatory authorities (Hatzikou et al., 2020; 

ATMP Forum, 2023). 

 

First, advanced therapies are generally aimed at treating severe diseases with a largely unmet 

therapeutic need that requires urgent therapeutic intervention (Angelis, Naci and Hackshaw 

2020; Coyle et al. 2020; Pochopien et al. 2021). Consequently, evidence for the efficacy and 

safety of advanced therapies at the time of market authorization is often based on small-scale 

clinical trials with single-arm designs, leading to limitations such as small sample sizes, short 

follow-up periods and potentially heterogeneous treatment effects. 

 

Second, advanced therapies are characterized by unique administration methods that often 

require a single or one-shot administration (Jørgensen and Kefalas 2021) and achieve curative 

or potentially curative long-term outcomes. However, this one-shot administration has a 

significant immediate financial impact, while the benefits only materialize over time. The price 

of these one-shot therapies, which typically ranges from around €300,000 to almost €2 million, 

appears very high compared to other therapies whose total cost is spread gradually over time 

due to the upfront expenditure (Ronco et al. 2021). The high costs incurred immediately and 

the uncertainty of whether the therapeutic effect will persist over time hinder the uptake of one-

shot therapies and thus patient access to these transformative therapeutic products 

(Jørgensen and Kefalas 2021). This leads to undesirable distortions in access to treatment, 

simply due to differences in administration methods and the resulting differences in the timing 

of financial flows. 

Other barriers preventing timely market access for ATMPs are infrastructure requirements and 

uncertainties in administration protocols (Overdose and Kefalas 2021). 

 

Given the large number of advanced therapies currently in development and the expected 

introduction of many one-shot (or potentially one-shot ) treatments, it is crucial to find 

appropriate reimbursement models to ensure their financial sustainability and timely patient 

access to advanced therapies. 

 

In the recent past, increasing innovation pressure on pharmaceutical expenditure and the 

emergence of innovative, high-cost treatments have led regulatory authorities and 

pharmaceutical companies to increasingly rely on Managed Entry Agreement (MEA) models 

(Pani and Becker 2021; Ronco et al. 2021).  

In particular, the emergence of advanced therapy medicinal products (ATMPs) has recently 

sparked a debate on how to combine pay-for-performance agreements and installment 

(annuity) payment systems in innovative MEAs to balance the one-shot administration of many 

ATMPs with their potential long-term benefits (Dabbous et al. 2020). In this context, Hanna et 

al. (2018) point out that outcome-based agreements between manufacturers and payers, 
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possibly including outcome-based installment payments, are necessary to address the 

significant additional uncertainty associated with advanced therapies compared to 

conventional therapies. In this area, it is therefore crucial to develop a theoretical framework 

for the identification and use of outcome-based MEAs and the methods for determining 

conditional payments. 

 

Considering that advanced therapies benefit patients for life and can sometimes replace long-

term treatments for chronic diseases, leading to potential savings for national health systems, 

it would be appropriate to spread the budgetary impact of ATMP-related expenditure over a 

timeframe comparable to that of more traditional therapies administered over time. This would 

avoid distortions due to the different timing of cash flows. However, financial reporting 

standards and most public accounting rules classify pharmaceuticals as current expenses and 

treat them as consumable goods that cannot be amortized over several years (Dabbous et al. 

2021). More recently, outcome-based payment models have been introduced to address the 

high uncertainty about the long-term benefits of advanced therapies. Deferred payments are 

particularly suitable for the reimbursement of potentially curative one-shot therapies. In many 

cases, however, the solutions chosen do not take into account all the risks outlined by Grutters 

et al. (2015) and often lead to the setting of confidential discounts. 

 

It is certainly not always necessary to resort to complex MEAs. In particular, the relationship 

between prevalence and incidence within the therapeutic area of advanced therapies is an 

important factor in determining the most appropriate reimbursement models. 

In the following analysis, we will focus on a subset of advanced therapies that are 

characterized by the simultaneous presence of three factors: 

● One-shot administration leading to immediate manifestation of therapy costs and 

potential long-term benefits; 

● Curative or transformative outcomes for patients’ clinical history and high uncertainty 

at the time of access to reimbursement; 

● High prevalence to incidence ratio. 

The rationale for this choice stems from the need to introduce conditional and deferred 

payment models in these cases, which combine the characteristics of reimbursement 

schemes such as success fee, payment at result, or annuity payment. 

 

 

This paper proposes a model for the introduction of outcome-based annuity payment schemes 

for the reimbursement of one-shot or potentially one-shot advanced therapies that are curative 

or transformative for patients’ clinical histories. 

The model provides the theoretical framework for determining the contractual characteristics 

for reimbursement of Advanced Therapy Medicinal Products (ATMPs), including in particular: 

● A methodology for determining deferred payments beyond the fiscal year; 

● Conditions and criteria for determining conditional payments based on expected 

benefit; 

● Methods for assessing the expected and realized savings for the National Health 

System. 

The final section of the document also proposes the establishment of a dedicated fund for 

ATMPs, the potential allocation of which will be determined through a horizon scanning study. 
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Strategies for dealing with the uncertainty associated with one-shot ATMPs for high 

prevalence diseases 

 

Having outlined the specific uncertainty profile of one-shot ATMPs in the previous section, it 

is necessary to identify the most appropriate tools to deal with this uncertainty. In particular, 

given the need to use MEAs as the primary tool for managing uncertainty in health technology 

assessment (HTA), the question arises as to which reimbursement model is most appropriate 

for advanced therapies. The choice of the most suitable MEA is based on the risk analysis 

applied to ATMPs. 

 

The issue of selecting the most appropriate MEA for one-shot therapies is addressed with 

reference to the risk analysis model developed by Grimm et al. (2017) on behalf of the National 

Institute for Health and Care Excellence (NICE). This section presents a simplified model 

inspired by Grimm et al. (2017). The aim is to show why deferred payments and outcome-

based payment systems are appropriate solutions to address the specific uncertainty profile 

of one-shot ATMPs. The conceptual framework outlined by Grimm et al. (2017) is based on 

three measures of uncertainty, known in the literature as: 

● Payer Uncertainty Burden (PUB); 

● Payer Strategy Burden (PSB); 

● Payer Strategy and Uncertainty Burden (P-SUB). 

 

 

These measures can be derived from the traditional cost-effectiveness analysis used in the 

evaluation of health technologies by regulatory bodies. The PUB represents the decision risk 

associated with the probability of an incorrect decision based on the current evidence and the 

costs that such an incorrect decision entails. The PSB is strategy-specific and captures the 

risk associated with abandoning currently used therapeutic options in favor of a non-optimal 

strategy. The P-SUB is the sum of the two sources of uncertainty (PUB and PSB). 

 

Mathematically, the PUB corresponds to the expected value obtained under conditions of 

perfect information (Expected Value of Perfect Information, EVPI) and is defined as follows 

 

 
where NB(d,θ) is the net benefit function, d indexes the strategies (technologies) in a set D 

and θ is a vector of uncertain parameters of the model (provided by a probabilistic sensitivity 

analysis). 

 

The PSB is defined as 

 

 
 

where d′ stands for a strategy that, according to current knowledge, is probably suboptimal in 

terms of costs. For the cost-effective strategy d∗  the PSB(d∗ ) is zero. 
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The result of the probabilistic sensitivity analysis that accompanies cost-utility or cost-

effectiveness models shows the potential variation in the cost-effectiveness levels of the 

treatment in response to changes in the parameters of the assumed model (θ). 

Figure 1 shows the plot of the incremental cost-effectiveness ratio of a hypothetical one-shot 

therapy. In the graph, the vertical distance of a point in the cost-effectiveness plane from the 

line representing the willingness-to-pay threshold indicates the contribution of that observation 

to the P-SUB. The total P-SUB results from the sum of the vertical distances of all points. 

 

For simplicity, let us consider the case of a single treatment with a linear Probabilistic 

Sensitivity Analysis (PSA) trajectory, as shown in Figure 1. This is of course a simplified 

representation, but it allows a clearer observation of the different effects associated with the 

one-shot nature of many advanced therapies. 

 

 

 
Figure 1: Hypothetical case of a PSA comparison between standard therapy and an analogous 

one-shot advanced therapy. In the case of one-shot therapy, a rotation of PSA is observed, 

corresponding to a higher level of Payer Strategy & Uncertainty Burden (P-SUB). 

 

 

In this hypothetical case, the incremental costs of the different PSA instances increase linearly 

with the incremental effectiveness at the chosen threshold. 

For example, consider a simplified version of the treatment in Figure 1, which could be a 

therapy that is administered to patients regularly for as long as they benefit (e.g., until 

progression). Now consider the hypothetical scenario in which the same therapy becomes 

available in a one-shot version with the same average cost-effectiveness. The only difference 

between the two treatments in this hypothetical case is that the advanced therapy is 

administered in a single dose (one-shot). If you vary only the administration method among 
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the parameters of the model vector θ, you get a higher degree of P-SUB. This is because one-

shot therapies entail a higher degree of independence between the incremental cost of the 

therapy, which is largely the same for patients at the time of administration, and the 

incremental effectiveness, which may vary depending on the duration of the expected benefit. 

 

Given the higher P-SUB resulting from the one-shot nature of therapies, it is appropriate to 

consider the use of Managed Entry Agreements (MEAs) to better manage the specific and 

additional risk profile of one-shot therapies. In Figure 2, we show the impact of a simple 

payment scheme that provides for conditional payments in the form of success fee based on 

patients achieving a certain threshold of incremental effectiveness. As an example, consider 

a scenario in which a simple measure of patient survival captures the incremental 

effectiveness of the advanced therapy and conditional payments are only made if patients are 

still alive in the years following treatment. Assuming that the MEA is neutral with respect to 

the cost per quality-adjusted life year (QALY), Figure 2 shows how the introduction of a 

payment-at-result MEA with deferred and outcome-based payments reduces the P-SUB of the 

one-shot therapy. 

 
 

Figure 2: Impact of introducing a payment-at-result scheme to mitigate the P-SUB of a one-

shot advanced therapy. 

 

Although the example intentionally refers to a stylized and simplified version of the cost-

effectiveness analysis of an advanced therapy, it nevertheless demonstrates the usefulness 

of the risk analysis framework originally developed by Grimm et al. (2017) to highlight the 

benefits of using appropriate MEAs to manage the uncertainty associated with one-shot 

ATMPs. Furthermore, this analysis provides the theoretical framework for the widespread use 

of MEAs with deferred payments by European regulatory authorities to ensure reimbursement 

of advanced therapies. 

In the following analysis, we show how the method proposed by Grimm et al. (2017) can be 

used during cost-effectiveness HTA analysis to determine the extent of conditional payments 
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associated with one-shot advanced therapies. We then analyze the parameters responsible 

for decision uncertainty by performing the expected value of perfect information (EVPI) 

analysis as described in Strong, Oakley, and Brennan (2014). The second part of the analysis 

is to simulate the effects of the proposed MEAs. For this purpose, it is possible to re-estimate 

the cost-effectiveness models with and without MEAs. 

 

Before explaining the application of the proposed methodology to determine MEAs, it is 

necessary to distinguish between the different types of ATMPs based on the incidence to 

prevalence ratio of diseases and other characteristics that may be useful for the 

implementation of specific conditional payment models. We then move to the methodological 

section and describe the payment systems in detail using a case study. In the case study, we 

illustrate the application of the Grimm et al. (2017) model for risk analysis in the context of 

health technology assessment. This approach makes it possible to determine the risk burden 

associated with the payer’s decision problem. The decision problem in our framework is to 

determine which payment system should be considered optimal for dealing with the specific 

uncertainty associated with advanced therapies. 

 

 

The role of prevalence and incidence in the choice of reimbursement model for one-

shot advanced therapies 

 

The prevalence and incidence of the target population for advanced therapies influence the 

choice of reimbursement models. The importance of the characteristics of the target 

population for advanced therapies arises primarily from the need to tailor reimbursement 

models specifically to ATMPs. This need arises from the different financial impact that different 

ATMPs will have on drug expenditure over time, as well as the different ways in which previous 

analyses, such as Kaplan-Meier curves, can be used. 

 

For the healthcare system, the total number of patients requiring curative therapy over the 

course of a generation is composed of an initial prevalent population and an annual variation 

based on incidence, which increases by a factor of g over time due to new diagnoses. The 

main difference between ATMPs with a high prevalence/incidence ratio (prevalence dominant 

- PD) and ATMPs with a high incidence (incidence dominant - ID) lies in the different 

relationship between the backlog of already diagnosed patients (prevalence) and the flow of 

new diagnoses over time (incidence). Prevalence and incidence influence the timing of the 

impact on the budget and the associated financial flows (Noordzij et al. 2010). Table 1 provides 

an overview of the incidence and prevalence of some ATMPs.  
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Table 1: Estimated incidence and prevalence for some advanced therapies 

 
Legend: ADA-SCID, Severe combined immunodeficiency due to adenosine deaminase deficiency; ALL, acute 

lymphoblastic leukemia; DLBCL, diffuse large B-cell lymphoma; PMBCL, primary mediastinal large B-cell 

lymphoma; RP, retinitis pigmentosa; LCA, Leber’s congenital amaurosis; TDT, transfusion-dependent β-

thalassemia; SMA, spinal muscular atrophy; NR, not reported; MLMT, multi-luminance mobility test. 

 

 

 

The need to introduce different payment schemes for treatments with a high 

prevalence/incidence ratio stems from several key factors. First, and most importantly, the 

budget implications are very different for the two types of advanced therapies. In prevalence-

dominant (PD) scenarios, the use of deferred payment solutions allows for a more even 

distribution of payment streams over time, within the given budget constraints. For advanced 

therapies for high incidence dominant (ID) indications, where the number of patients to be 

treated at launch is not high, the use of deferred payment does not significantly change the 

expenditure streams over time and is therefore not necessary to comply with the budget 

constraint. The different budgetary impact of PD and ID drugs can be easily understood with 

a simple example. Consider two diseases with the same total number of patients requiring 

treatment: The first PD-type disease has 1000 prevalent patients and a constant incidence of 

100 patients per year, while the second ID-type disease has no prevalent patients but double 

the number of incident patients per year (200 instead of 100). Let us assume that the treatment 

Advanced 

Therapy 
 

Indication 
 

Prevalence Incidence Duration of Effect 

Strimvelis  ADA-SCID 1-9/1000000 1-5/1000000 7 years of intervention-free survival (8-12) 

Kymriah  B-cell ALL 1-5/100000 1-3/100.000 24 months of overall survival 

Kymriah  DLBCL  4-13/100000 3-6/100.000 18 months of overall survival 

Yescarta  DLBCL  4-13/100000 3-6/100.000 18 months of overall survival 

Yescarta PMBCL 0,1-2/100000 0,4/1000000 18 months of overall survival 

Luxturna  RP 0,4-2/100000 0,01-0,4/1000000 4 years of improvement in MLMT score 

Luxturna  LCA  1-5/1000000 NR 4 years of improvement in MLMT score 

Zynteglo  TDT  1-2/100000 1/100000 4.3 years of transfusion independence 

Zolgensma  SMA  10-20/1000000 1-2/10000 4.3 years of event-free survival 
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costs are the same and the budget constraint is set at the cost of treating 300 patients per 

year. 

PD Case 

Year (Y)  1 2 3 4 5 6 7 8 9 10 11 12 13 14 
Patients 1000 100 100 100 100 100 100 100 100 100 100     
Annuities Prevalent 

patients (p.) 
 200 200 200 200 200          

Annuities Incident p., Y 1  20 20 20 20 20          
Annuities Incident p., Y 2   20 20 20 20 20         
Annuities Incident p., Y 3    20 20 20 20 20        
Annuities Incident p., Y 4     20 20 20 20 20       
Annuities Incident p., Y 5      20 20 20 20 20      
Annuities Incident p., Y 6       20 20 20 20 20     
Annuities Incident p., Y 7        20 20 20 20 20    
Annuities Incident p., Y 8         20 20 20 20 20   
Annuities Incident p., Y 9          20 20 20 20 20  
Annuities Incident p., Y10           20 20 20 20 20 

Total Annuities 0 220 240 260 280 300 100 100 100 100 100 80 60 40 20 

 

ID Case 
Year (Y)  1 2 3 4 5 6 7 8 9 10 11 12 13 14 
Patients 0 200 200 200 200 200 200 200 200 200 200     
Annuities, Prevalent  

Patients (p.) 
 0 0 0 0 0          

Annuities Incident p., Y 1  40 40 40 40 40          
Annuities Incident p., Y 2   40 40 40 40 40         
Annuities Incident p., Y 3    40 40 40 40 40        
Annuities Incident p., Y 4     40 40 40 40 40       
Annuities Incident p., Y 5      40 40 40 40 40      
Annuities Incident p., Y 6       40 40 40 40 40     
Annuities Incident p., Y 7        40 40 40 40 40    
Annuities Incident p., Y 8         40 40 40 40 40   
Annuities Incident p., Y 9          40 40 40 40 40  
Annuities Incident p., Y10           40 40 40 40 40 

Total Annuities 0 40 80 120 160 200 200 200 200 200 200 160 120 80 40 

 

Table 2: The results of a simulation to illustrate the budget impact of an advanced therapy with 

high prevalence/low incidence (PD) and a drug with low prevalence/high incidence (ID). The 

table shows the effectiveness of a deferred payment (annuity) scheme in mitigating the impact 

of a PD drug on the budget, while the introduction of the same scheme in the second case 

does not appear to be necessary to meet the assumed budget constraint of 300. 
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In our example, we assume for the sake of simplicity that the incidence remains constant over 

time and that — according to our framework— - it is a one-shot type. In this simple case, the 

impact of the payments (Annuity - A) on the fund (Budget Impact - BI) depends on the 

incidence and prevalence over the years (t) of the initial payment deferral (t ≤ n) and is 

represented by the sum of the deferred payments for the prevalent patients in the first year 

and the incident patients. In the PD case, it can be seen that by deferring payments for the 

prevalent population, spending can be spread over time, avoiding the spike in outflows that 

would occur if implemented without annuity payments. Without an appropriate deferral, the 

initial expenditure (1000) would be well above the budget set at 300. 

In this case, it is always possible to ensure compliance with the budget constraint (allocation 

of a potential dedicated fund for the reimbursement of ATMPs, the "ATMP fund") by adjusting 

the deferral appropriately. In contrast, in the case of ID, the use of payment deferrals is not 

immediately necessary, as the lack of a significant prevalent population and the associated 

high incidence only leads to a deferral of expenditure over time, which would always remain 

well below the budget constraint (300). 

 

In both cases, the impact on the ATMP fund is greatest during the period of expenditure 

deferral (in our case, the first 5 years) and decreases thereafter. This effect depends on the 

decision to grant deferrals over a period that is not too long, but is nevertheless useful for 

gathering evidence that helps to reduce uncertainty about the outcomes of the treatments 

provided. 

Of course, this simple principle — namely the need and opportunity to use payment deferrals 

for one-shot advanced therapies to treat diseases with a high prevalence/incidence rate — 

also applies in more complex situations where the number of patients fluctuates over time and 

an appropriate discount rate is applied to the deferred payments. 

 

A second reason for the need for different reimbursement schemes for PD and ID advanced 

therapies is related to the different nature of the decision risk. ID therapies generally address 

life-threatening diseases with shorter Kaplan-Meier curves and more measurable treatment 

outcomes (e.g. death or progression). In contrast, therapies for PD-type diseases generally 

have longer Kaplan-Meier curves and require more complex assessments of treatment 

outcomes. The greater uncertainty associated with PD therapies therefore suggests the use 

of appropriate Managed Entry Agreements (MEAs). Probabilistic sensitivity analyzes highlight 

the importance of a lifetime time horizon for one-shot advanced therapies for PD-type 

diseases, as variations in patient survival have a direct impact on cost-effectiveness 

evaluations (e.g. in terms of ICER per QALY). 

 

Finally, the risk profiles of PD and ID drugs differ considerably. In particular, the introduction 

of ATMPs in a market where effective therapies already exist poses a strategic challenge, as 

the existing therapies form the standard of care against which ATMPs are measured. For ID 

therapies, the expectation of an increase in the patient population in the future is often 

compounded by the existence of already effective treatments. This scenario introduces an 

additional layer of risk for ID therapies, characterized by the immediate need to address the 

Potential Savings Bias (PSB). The payment scheme for ID drugs should, therefore, focus more 

on mitigating the PSB. In the PD scenario, on the other hand, the unmet need is generally 

higher. This reduces the risk associated with PD drugs, as the lack of effective treatments 

means a potentially less competitive landscape for introducing new therapies. 
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Overall, it is therefore considered that access to the ATMP fund should be defined according 

to the prevalence profile of diseases and the potentially curative one-off nature of novel 

therapies, as outlined in the previous sections. In the next two sections, we will look at the 

details of the analysis of the relevant factors for determining deferred and conditional 

payments and provide a concrete example of how the mechanism is implemented. 

 

 

 

 

A Theoretical Framework for Defining Reimbursement Models for ATMPs 

 

In this section, we explain the methods for selecting the most appropriate reimbursement 

schemes for one-shot advanced therapies. 

A first decision concerns the optimal duration of conditional payment schemes. While in theory 

it would be desirable to implement a payment system that covers all future developments in 

advanced therapies, several practical reasons argue against such an approach. For example, 

the monitoring of patients over long periods of time is dependent on the proper updating of 

patient registries, which is often associated with a significant administrative burden and 

potential measurement errors. In addition, the financial benefits of implementing long-term 

conditional payment systems over the lifetime would be significantly less than the 

implementation costs of managed entry agreements (MEAs). 

 

A second important aspect concerns the possible use of annuity payments. In the previous 

section, we explained that the need to defer spending on one-shot advanced therapies is 

particularly evident in the case of PD conditions, as the one-shot cost per patient leads to a 

spike in overall spending at launch, when uncertainty about the actual efficacy of the therapy 

is usually still high. In the case of PD-type advanced therapies, it is advisable to make 

payments contingent on outcomes, whereas for ID-type therapies, more conventional 

outcome-based payments can be used to manage uncertainty over shorter time periods, 

typically within a year. 

 

Specifically, for PD-type advanced therapies, we plan to quantify the "optimal duration" of the 

payment system by first estimating the price of the one-shot advanced therapy and 

determining the average annual cost of therapies currently used in the same therapeutic 

areas. This approach allows us to determine the average reimbursement period by assuming 

uniform payments. Using Evaluate Pharma's data, we estimate that the expected average cost 

of a one-shot advanced therapy is approximately $1.34 million. This estimate is consistent 

with Coquerelle et al. (2019) and Cook et al. (2020). The average annual cost of therapies 

currently used in the same areas is estimated to be between $240,000 and $250,000 (in line 

with Makurvet, 2021). Thus, if we assume an even distribution of the cost of advanced therapy 

over time, the conditional payments could be structured over a period of 4 to 5 years. 

 

The design of the MEA also depends on the factors that contribute to the reduction of 

uncertainty. The most important factors, apart from the mere passage of time, are due to the 

generation of real-world data (RWD). The latter inevitably leads to a reduction in uncertainty. 

For example, if the product has already been on the market for a year, more information about 
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its effectiveness in the target population will inevitably be available, regardless of the 

generation of RWD-based measures. Taking into account this additional information resulting 

from the passage of time, the regulatory body has the option to take action (e.g. renegotiate 

the contract) if there are significant deviations between the expected and observed efficacy or 

other relevant changes in the reference context. If no further action is taken, the Agency 

implicitly accepts that the evidence collected is in line with the expectations that led to a 

particular assessment of the drug at launch (e.g. that overall survival evolves according to the 

Kaplan-Meier curve predicted in the initial HTA analysis phase). 

 

Another option is to create RWD measures, for example using patient registries. RWD offers 

a potential reduction in uncertainty that complements the inevitable passage of time. In 

practice, however, real-world data are often collected in non-randomized and uncontrolled 

settings. It is not clear in principle whether data collected during the clinical phase are more 

reliable than real-world data. Even though the study population in the real world is larger and 

more diverse, it is not subject to the necessary controls that are performed in clinical trials to 

ensure correct statistical inference. For example (and this is critical), the real-world population 

is not balanced, and data from patient registries is often incomplete. In other words, even if 

real-world results are obtained, it may in principle be necessary to take into account the 

additional uncertainty factors associated with the use of RWD. However, we believe that the 

use of RWD in this context can be seen as complementary to the other sources of uncertainty 

reduction mentioned in the literature. It is important to recognize that the uncertainty 

associated with RWD is significantly lower in the context of incidence-dominant (ID) advanced 

therapies, where outcomes are more easily quantifiable. As mentioned above, ID drugs 

primarily affect patients with incurable diseases, and the effectiveness of these drugs is often 

assessed by their ability to prolong the patient's life. 

 

The proposed payment scheme for PD-type advanced therapies involves the use of 

conditional and deferred payments (payment at result ). At the patient level, payments will be 

discontinued in the event of patient death or registry-detectable treatment failure (e.g., if a 

transplant becomes necessary). If the regulatory body receives other negative signals 

indicating an incomplete recovery of the patient, it may decide to wait for further future signals. 

In particular, the Agency could decide to suspend the payment installment at the time t when 

the negative signal occurred and carry out further checks according to the terms originally 

agreed in the contract. If the checks confirm a treatment failure, the regulatory body may 

consider a permanent suspension of the payment. Otherwise, payment will continue and the 

installment will be refunded. The exact implementation details of the payment plan must be 

determined ex-ante at the time the contract is drawn up. 

When an ATMP drug is administered in the last phase of a patient's life, the arrival of newly 

diagnosed patients becomes a primary driver of spending, and the focus shifts from patient 

prevalence to the incidence of new patients. Therefore, from a spending policy perspective, 

payment systems based on annuity payments are not appropriate for ID-type ATMPs. In this 

context, the use of the previously described payment system becomes redundant and often 

counterproductive. This assertion is supported by the analysis developed in the previous 

session, which makes it clear that deferred payments do not allow adequate management of 

the impact on the budget. Furthermore, the use of shorter Kaplan-Meier curves supported by 

clearer outcomes (e.g. patient survival) renders the payment system developed for PD 

therapies redundant for ID therapies. 
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Framework for Determining Conditional Deferred Payments for One-Shot PD Therapies 

 

In this subsection, we propose a model for determining deferred payments (success fee ) for 

PD-type advanced therapies. As explained in the previous section, the payment scheme is 

designed to manage the uncertainty associated with one-shot advanced therapies. The 

proposed methodology is based on the Payer Uncertainty Burden (PUB) estimation introduced 

by Grimm et al. (2016, 2017) to quantify the uncertainty associated with the HTA analysis. The 

payment scheme is described as follows 

 

 

 
 

In particular, we consider a situation in which the one-shot PD advanced therapy is 

administered at time t = 1 and the total payment is spread over T periods (up to a maximum 

of 5 years, as described in the previous section). 

The first installment, paid at time t = 1 (i.e. R1 in the figure), is determined based on the present 

value of the comparator (Discounted Value of the Comparator, DVC), adjusted for the 

uncertainty (PUB) arising from the one-shot nature of the advanced therapy compared to its 

comparator. From t = 2, the uncertainty is partially resolved due to the passage of time and 

the generation of RWD. Thus, on the one hand, the subsequent rates, Rt for t = 3, . . . T - 1, 

carry the partial reduction of uncertainty through time by restoring a constant fraction δ of the 

PUB. On the other hand, they also take into account the resolution of uncertainty due to RWD 

by the term w, defined as 

 
 

where EOt is the expected outcome at time t, RWOt is the real outcome at time t, and AVTot.QALY 

is the added therapeutic value of the unique drug (compared to the comparator) in terms of 

total QALYs. The rate at time t is given by 

 
 

and consists of three parts. The first part, w, represents the conditional component of the 

payment, which varies according to the difference between the expected and observed patient 

outcomes. The second element (annuity) serves to balance the temporal evolution of 
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expenditures for one-shot advanced therapies with those for corresponding therapies that are 

continuously administered over time. Finally, the third element is related to the resolution of 

uncertainty over time according to a factor δ that is assumed to be constant and equal to 1/T. 

 

 

Continuous modulation by factor w is feasible, especially because PD therapies usually 

require ongoing monitoring of RWD by registries. These data can be rigorously compared with 

expected outcomes derived from the HTA model and extrapolation of Kaplan-Meier curves to 

examine the gain in overall survival (OS) for patients treated with PD advanced therapies. 

Longer Kaplan-Meier curves require a longer adjustment period, but provide increasingly 

robust evidence in the medium to long term. The expected QALY gains of patients treated with 

PD therapies need to be compared with actual outcomes, which can be monitored using 

patient registries. These findings are crucial for the determination of installment payments and 

the subsequent contract renegotiation phase. It should be noted that the last installment, RT, 

reflects the presence of residual uncertainty (ε). In an ideal scenario where the number of 

patients remains constant over time, the financial difference between the long-term observed 

values and the rate structure would be negligible. However, the need to limit the overall 

duration of conditional payment programs may result in residual uncertainty. The contract 

renegotiation process could significantly reduce ε and address the Payer Strategy Burden 

(PSB) in a contextualized manner. During this process, the payer could request a repricing 

that takes into account the residual uncertainty of the original contract. 

 

Finally, it is important to emphasize that in the case of PD therapies, PSB is not initially 

covered, but will be addressed later in the renegotiation phase. Consequently, the 

pharmaceutical company agrees to provide the customer with a substantial discount in the 

initial phase and in return provide a delayed discount on the PSB in the renegotiation phase. 

This approach compensates for the fact that, unlike ID drugs where the P-SUB is "paid back" 

through subsequent discounts, the company provides a discount on the PUB in the initial 

period. This discount is offset by the assurance of the P-SUB to the company, which 

represents the cost to the customer of choosing that therapy over potentially better ATMP 

comparators that might emerge after the renegotiation period. Essentially, for PD therapies, 

companies respond to the need for an immediate discount by deducting the PUB from the 

DVC at the original rate. 

 

 

 

An example of the application of conditional and deferred payment schemes for One-

Shot PD Advanced Therapies 

 

This section presents the results of the proposed payment system for reimbursement of a PD 

therapy as a case study. In our setting, a PD product represents an ideal case study, as many 

PD-type ATMPs are among the most expensive in the world (Saha et al. 2021). As a result, 

numerous challenges have arisen in defining reimbursement models (Picecchi et al. 2020), 

making it necessary to find an innovative reimbursement model. 

 

Product X is an intravenous one-shot gene therapy. At the time of the market launch of product 

X, other comparator products were available. In our analysis, we are guided by the Italian 
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Medicines Agency (AIFA) and have taken the direct comparator of product X identified by 

AIFA. In addition, like AIFA, we consider an ICER/QALY of €51,690. AIFA has applied a 

discount reserved for Product X as part of the negotiation terms. The data available to us come 

from a dedicated study to evaluate the safety and efficacy of X. In particular, they provide 

information on tolerability, pharmacokinetics, pharmacodynamic costs and monetary benefits 

of the drug. In addition, the cost-effectiveness analysis of X was carried out over the entire 

lifetime of the patient based on the type of disease to be treated. The study contains detailed 

data on X and its comparator drugs in specific sections. This includes the monthly costs 

(hospitalization, medical care, travel costs and more) and the net monetary benefit of the 

treatments considered. 

 

The rates for reimbursement of therapy X follow the proposed scheme for PD therapies. 

Specifically, the first installment is calculated as the difference between the net present value 

(NPV) of the direct comparator and that of the PUB. The PUB is calculated based on the 

information available in the literature on the NB of X and its comparator. In practice, we have 

calculated the components of the PUB separately. To obtain Eθ{maxd NB(d,θ)}, we first 

calculated the maximum NB between X and its comparator product for each month. We then 

averaged this result to obtain Eθ{maxd NB(d,θ)}. 

Next, we derived maxd Eθ{NB(d,θ)} by first averaging the NBs of X and its comparator and 

then taking the maximum between the two averages, i.e., the average NB of X and the average 

NB of its comparator. For the sake of completeness, we also calculated the PSB of the two 

treatments and obtained a PUB of € 67,470 and a PSB of € 436,178. 

To calculate the net present value (NPV) of the comparator treatment of X, we used both the 

available data on the monthly costs of the comparator treatment and the overall survival (OS) 

associated with the drug. The NPV was calculated by weighting the monthly installments by 

the estimated OS of the comparator drug of X in month s at an interest rate i = 4% 

 
 

 

 

where CFs is the net cash flow in the month s. The NPVcomparator was calculated at € 658,723. 

Finally, the first installment was set at NPVcomparator - PUB, i.e. € 598,723. 

We then calculate the following installments, Rt, up to a point in time of T = 5 years. 

Rt is the sum of the average annual costs of the comparator and the term w, as described 

above. In addition, the term δ PUB is added to each installment. As mentioned before, the 

idea is that the term δ PUB takes into account the resolution of uncertainty (measured by PUB) 

due to the passage of time, while the term w deals with the resolution of uncertainty due to the 

presence of RWD. In this particular case, the calculation results in the following deferred 

payments. 
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Of course, the actual value of the payments may differ from the expected value if the observed 

results differ from the predicted ones. 

Finally, we come to the last installment Rt. In principle, Rt  should correspond to the difference 

between the total price of product X and the installments paid up to T - 1. The amount of the 

last installment reflects the remaining uncertainty to be resolved. 

An alternative solution is for the two parties to agree to a longer contract term to eliminate 

most of the remaining uncertainty or to determine a lump sum for the remaining uncertainty 

and spread it over the installments. The lump sum should in principle be proportional to the 

deviation of the observed Kaplan-Meier (KM) curve for the OS of product X compared to the 

expected curve. 

In summary, it is possible to define a deferred payment model depending on the observed 

outcomes that adjusts the actual reimbursed price for the one-shot advanced therapy to the 

observed outcomes, thus ensuring a budget impact equivalent to that of conventional 

therapies. 

 

 

Discussion 

 

This work proposes a payment scheme for one-shot advanced therapies. In particular, we 

have examined the main challenges related to the reimbursement of one-shot ATMP drugs 

and the current reimbursement methodologies in the European Union. By applying the risk 

analysis proposed by Grimm et al. (2016, 2017), we identified outcome-based payments as 

the most appropriate MEA to ensure the reimbursability of ATMPs. The need to introduce ad 

hoc reimbursement schemes stems from the inability of currently used MEAs to capture a 

significant portion of the risk associated with the one-shot nature of advanced therapies. This 

refers to the risk of decision uncertainty, i.e. the risk of making the wrong decision based on 

the available evidence (reimbursement of non-cost-effective therapies or non-reimbursement 

of cost-effective therapies). 

Following Grimm et al. (2016, 2017), we synthesized the decision maker's risk with a measure 

called P-SUB, which can be derived from HTA analysis. We then identified and addressed the 

two main sources of uncertainty resolution arising from the passage of time and the collection 

of RWD. As a further contribution — recognizing the diversity of the scope and administration 

methods of ATMP drugs — we made a distinction between prevalence-driven (PD) and 

incidence-driven (ID) drugs and proposed the activation of a dedicated fund to cover deferred 

payments for PD-type advanced therapies. In cases where regulatory bodies consider the use 

of MEAs based on multi-year conditional payment deferrals to be the most appropriate tool to 

address uncertainty and ensure immediate access to advanced therapies, coverage of 

deferred payments will be ensured through a dedicated fund. 

 

Finally, we have applied the proposed payment models to a real case. The payment model for 

PD product X uses the PUB to incrementally increase the ICER per QALY reimbursed to the 

company, which acts as a precautionary reward to compensate for the one-shot nature of the 

ATMP. The theoretical framework of the payment scheme applied to PD product X establishes 

an ex- ante decision on the installment amounts with conditional weighting based on observed 

real-world outcomes. Again, our approach assumes that outcomes are observed through the 

use of patient registries. 

Although we have considered the key determinants of risk-based payment models for one-

shot drugs, such as the removal of uncertainty and the resulting sharing of risk between the 
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parties involved in the contract, there is scope to modify and adapt the proposed methods. An 

initial assessment relates to the use of registries as tools for collecting RWD.  

However, this approach may not be sufficient, as the registers are incomplete for various 

reasons (see e.g. Wah, 2020). Consequently, uncertainty can only be partially reduced by 

observing real-world outcomes. To quantify this partial reduction of uncertainty, we used the 

PUB. Theoretically, the PUB is calculated using outcome measures such as PFS and OS (cf. 

Grimm et al., 2017). In practice, payer registries only collect some of these measures, usually 

OS or other indicators of patient health status. Therefore, one could assume that, from the 

payer's perspective, the only decisive variable that determines uncertainty is that which is 

present in the registries. The remaining uncertainty for the payer therefore results from the 

difference between the actual PUB and that measured by the registries. This correction is not 

implemented in this work, and the rates are calculated using only the actual PUB. In future 

applications of the method, this correction could be included in the calculation of deferred 

payments. 

 

 

The ATMP Fund 

 

In the near future, more advanced payment models can be developed by relaxing some of our 

assumptions. However, to ensure timely access to advanced therapies, a dedicated fund must 

be established to enable the implementation of the reimbursement models described above 

and facilitate the development of payment models over multiple years. This would also ensure 

the proper accounting of the annuity payment by results model. Under the principle of 

extended financial competence and consistent with an annuity payment-at-result model, the 

expenditure obligation for purchases can be assumed at the time the legal obligation is 

formalized but allocated to the fiscal years in which the related payments are expected to be 

made, as contractually agreed. The ATMP fund would provide cover guarantees for future 

payments while ensuring adequate monitoring of therapeutic outcomes and spending trends. 

 

 

 

The ATMP fund should be adequately resourced to ensure coverage of deferred payments. 

This fund would also allow an assessment of the distribution of benefits and potential 

savings over a multi-year time horizon. A two-stage process is required to determine an 

appropriate financial allocation for the fund: 

1. First phase: estimate the average amount of conditional and deferred payments for 

each new eligible indication of the upcoming ATMPs over a multi-year reference 

horizon (2025-2030). 

2. Second phase: Evaluate the number of new indications that could potentially access 

the ATMP fund during the reference period, estimated by horizon scanning. 

 

 

To estimate the average level of conditional payment deferrals, an additional analysis of the 

impact on spending per indication (Anatomical Therapeutic Chemical Classification, ATC level 

3) for the arrival of ATMPs was conducted. The analysis, developed using Evaluate Pharma 
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data, utilized a causal machine learning model through the application of matrix completion 

techniques (Athey et al., 2021). 

For the estimation, the development of expenditure per indication in the period 2010-2024 was 

taken into account, whereby a distinction was made between "treated" indications —i.e. those 

for which an ATMP has been introduced — and "control" indications" for which no ATMP has 

yet been introduced. The approach adopted allows the estimation of a counterfactual trend in 

expenditure without ATMPs to determine the average treatment effect, i.e. the increase in 

expenditure per indication attributable to the introduction of advanced therapies (for more 

details on the methodology, see Nutarelli and Riccaboni, 2024). 

The analysis shows that in the model with additional covariates that take into account the 

number of products on the market (differentiated by type), potentially emerging generic 

treatments or biosimilars, pipelines and development costs, a significant increase in 

expenditure can be observed in the first two years, which should be deferred by conditional 

and deferred payments (Figure 4). Specifically, a potential additional expenditure of 3.7 million 

on average per new reimbursed indication is estimated. It should be noted that this is a 

conservative overestimate of the additional expenditure that could be incurred on average if 

the savings from not paying some outcome-based annuities do not materialize. The actual 

impact of the additional expenditure will therefore be lower if some contingent payments are 

not made. Alternatively, the incremental expenditure can be calibrated based on the data 

available to AIFA on the actual value of deferred payments for reimbursed ATMPs. 

 

 

 

 
Figure 3: Schematic representation of the method used to estimate the average impact of 

new ATMPs on average expenditure per therapeutic indication 
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The Figure 3 illustrates the methodological approach taken to estimate the incremental 

impact of ATMPs on spending per therapeutic indication. The process includes the following 

key steps: 

1. Data collection: historical spend data (2010-2024) is collected for each therapeutic 

indication (ATC level 3), distinguishing between "treated" indications (those with 

ATMP adoption) and "control" indications (those without ATMP adoption). 

2. Causal machine learning model: A matrix completion technique is used to estimate 

the counterfactual spending trend for treated indications without ATMP. 

3. Calculation of the average treatment effect (ATE): The difference between the 

observed expenditure in treated indications and the counterfactual expenditure 

results in the ATE, which represents the additional effect of ATMPs. 

4. Covariate adjustment: The model takes into account covariates such as the number 

of products on the market, upcoming generics, developments in the pipeline and 

development costs to refine the estimates. 

5. Estimation of additional expenditure: The analysis shows that spending increases 

significantly in the first two years after ATMP launch, which can be deferred through 

contingent and deferred payments. 

 

The figure visually depicts these steps and illustrates the comparative analysis between 

treated and control groups and the estimation of the counterfactual scenario to quantify the 

ATE. This approach provides a solid framework to understand the financial impact of ATMPs 

and support the design of reimbursement models. 

 

 

 

 
 

Figure 4. Impact of ATMP arrival on expenditure per indication, model with (right) and 

without controls (left)  

 

Figure 4 compares the impact of the introduction of ATMPs on expenditure per therapeutic 

indication using two models: one without controls (left) and one with controls (right). The model 

with controls includes covariates such as the number of products on the market, generics, 

pipeline developments and development costs to refine the estimates. The analysis shows 

that the inclusion of controls significantly improves the accuracy of the estimate of the impact 

on expenditure, particularly in the first two years following the introduction of the ATMP, where 

a significant increase in expenditure is observed. 

To determine the total amount of the fund, it is also necessary to estimate the number of 

potential new ATMP indications that will be reimbursed by 2030. This is a very complex 

undertaking that is subject to considerable uncertainty. 
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Based on an analysis of the research pipelines, considering only ATMPs with an estimated 

launch date by 2030 and a probability of success above 50%, 54 potential indications are 

estimated to be approved by the EMA (see Table 3 in the Appendix). This number would 

decrease to 51 potential indications if we consider approximately two years from the start of 

the European assessment process until publication in the Official Journal (ATP Forum, 2023). 

In this case, only indications that will be reimbursed by 2028 would be considered. Assuming 

that all products approved by the EMA are reimbursed in Italy, the potential allocation for the 

ATMP fund is estimated at €200 million. 

 

 

This estimate remains conservative for the following reasons: 

1. The actual impact of the additional expenditure could be lower: The actual additional 

expenditure could be lower due to unpaid contingent payments. Confidential rebates 

and MEAs are expected to significantly reduce the estimated incremental expenditure. 

2. Fewer reimbursed therapies: The actual number of therapies reimbursed could be 

lower than planned as some therapies may not be eligible for reimbursement. 

3. Limited access to the fund: Access to the fund could be limited to new indications for 

widely used ATMPs. AIFA is expected to assess the level of uncertainty for each 

product and determine the most appropriate MEA to manage it. Access to the fund will 

only be activated if AIFA deems it necessary to use deferred payment schemes 

(annuity payments) to guarantee future payments. 

However, it is important to allocate an appropriate amount to the fund, which may be adjusted 

over time based on additional information as it becomes available. 

 

 

Conclusions 

 

Advanced therapies represent a paradigm shift in 21st-century medicine. However, their 

effectiveness is still very uncertain at the time of market launch. In addition, they are usually 

associated with high initial costs due to their one-shot administration. These unique 

characteristics pose unprecedented challenges for access to reimbursement. The 

reimbursement system proposed in this study represents a potential solution to ensure timely 

and sustainable access to advanced therapies. Our approach is based on conditional payment 

schemes to align the costs of therapies with observed outcomes while respecting budget 

constraints. 

Another contribution of this work is the formalization of the distinction between ATMP drugs 

into two categories: prevalence-driven (PD) and incidence-driven (ID) drugs. We have shown 

the importance of this distinction for the budgetary impact of the two types of ATMPs and 

emphasize the need for different payment schemes for PD and ID ATMPs. Other factors may 

influence the choice of the most appropriate MEAs (e.g., the availability of easily measurable 

clinical outcomes that can be linked to outcome-based schemes), which is the responsibility 

of regulators. 

 

For PD therapies, our analysis emphasizes the need for conditional payments that adjust over 

time, taking into account the removal of uncertainty and the collection of RWD. In the case of 

these therapies, the multi-year collection of evidence to address uncertainty requires access 

to a dedicated fund to manage multi-year conditional payments. This approach not only 
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mitigates the financial impact on healthcare budgets, but also aligns payment structures with 

the long-term benefits and risks of ATMPs. The Product X case study illustrates how the 

proposed payment system can be applied to ensure that financial strategies are appropriate 

to balance the significant initial costs with the potential long-term benefits. 

In particular, the first installment is determined by subtracting the Payer Uncertainty Burden 

(PUB) from the Discounted Value of the Comparator (DVC), reflecting the need to mitigate the 

initial financial impact while considering the therapeutic value compared to existing treatments. 

Subsequent payments are then determined by a combination of the average annual spend on 

the comparator, a constant proportion of the PUB to account for the reduction in uncertainty 

over time, and adjustments based on real-world outcomes compared to expected outcomes, 

allowing for dynamic financial planning. Towards the end of the payment period, the possibility 

of renegotiating the contract based on the evidence gathered and adjusting the final amount 

to reflect the actual value of the therapy is considered. 

 

Our research has significant implications for the definition of innovative and evidence-based 

reimbursement schemes for ATMPs. This thesis is also supported by several studies in the 

literature (Pizevska et al., 2022; Ronco et al., 2021; Gozzo et al., 2021; Panteli et al., 2015). 

For PD-type therapies, policy should allow for installment payments that can be adjusted over 

time to reflect the evolving therapeutic landscape and financial implications. 

In addition, our study promotes the integration of real-world evidence into reimbursement 

decision-making, enabling the implementation of dynamic, outcome-focused financial 

agreements. By aligning reimbursement structures with therapeutic outcomes, health systems 

can improve access to innovative therapies while ensuring financial sustainability (Noone, 

Coffin, and Pierce, 2021). In summary, our research contributes to the ongoing dialog on 

optimizing pricing and reimbursement strategies for ATMPs (e.g., Eichler et al., 2022; Noone, 

Coffin, and Pierce, 2021; Fischer et al., 2023). By addressing the specific challenges of 

ATMPs, the proposed methods provide a way to balance the spending sustainability 

requirements of healthcare systems with the transformative potential of advanced therapies, 

as supported in the literature (Bloom et al., 2019; Kamusheva et al., 2021; Noone, Coffin, and 

Pierce, 2021). 

 

The establishment of a dedicated fund will also ensure the coverage of deferred payments in 

full compliance with the accounting standards for the outcome-based reimbursement of 

ATMPs. The establishment of an ATMP fund will eliminate the need to set aside funds as 

guarantees for future payment obligations of payers. In addition, it will be possible to 

demonstrate the savings resulting from the introduction of outcome-based reimbursement 

models for therapies. 
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Appendix 

 

 

Table A.1. Number of ATMPs in Development  

 

 
Source: Our elaborations based on Evaluate Pharma data. 

 

 

Figure A.1. Temporal Trend of Expenditure for Gene and Cell Therapies Compared 

to Expenditure for Monoclonal Antibodies   

 

Source: Our elaborations based on Evaluate Pharma data. 
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Table A.2. Horizon Scanning of ATMP Products  

 

Prodotto| Indicazione Meccanismo di azione Data 

Approvazi

one FDA 

Exp. 

Prob. 
Imprese coinvolte Lancio in 

Europa 

MACI | Bone repair & 

regeneration 
Chondrocyte regulator 13/12/2016  Sanofi, Vericel 31/12/1998 

Vavelta | Facial 

wrinkles/Nasolabial 

folds 

Fibroblast cell therapy   Regenerative Medicine Assets, 

Ember Therapeutics 
30/06/2008 

Provenge | Prostate 

cancer 
Anti-prostatic acid 

phosphatase (PAP) T-cell 

stimulant 

29/04/2010  Bausch Health Companies, 

Nanjing Xinjiekou Department 

Store, Sanpower 

06/09/2013 

Strimvelis | Severe 

combined 

immunodeficiency 

disease (SCID) 

Adenosine deaminase gene 

therapy 
  GSK, AGC Biologics, Orchard 

Therapeutics 
31/10/2016 

Alofisel | Gastro-

intestinal fistula 
Mesenchymal stem cell 

therapy 
  Takeda 31/03/2018 

Yescarta | Non-

Hodgkin lymphoma 

(NHL) 

B-lymphocyte antigen CD19 

CAR-T cell therapy 
18/10/2017  Gilead Sciences, Daiichi 

Sankyo, Fosun International, 

Fosun Pharma Kite 

Biotechnology 

31/08/2018 

Kymriah | Non-Hodgkin 

lymphoma (NHL) 
B-lymphocyte antigen CD19 

CAR-T cell therapy 
01/05/2018  The University of Pennsylvania, 

Novartis 
22/10/2018 

Kymriah | Leukaemia, 

acute lymphocytic 

(ALL) 

B-lymphocyte antigen CD19 

CAR-T cell therapy 
30/08/2017  Verismo Therapeutics, The 

University of Pennsylvania, 

Novartis 

30/11/2018 

Zynteglo | 

Thalassaemia 
βA-T87Q-globin gene 

transference 
17/08/2022  bluebird bio 30/01/2020 

Luxturna | Retinitis 

pigmentosa 
Retinoid isomerohydrolase 

gene therapy 
19/12/2017  The Children's Hospital of 

Philadelphia, Roche, Novartis 
28/02/2020 

Chondroseal | 

Osteoarthritis 
Cartilage stimulant 29/06/2020  Theracell, Orgenesis 29/06/2020 

Cartil-S | Osteoarthritis Chondrocyte regulator 30/06/2020  Theracell, Orgenesis 30/06/2020 

Zolgensma | Spinal 

muscular atrophy 
Survival of motor neuron 1 

(SMN1) gene transference 
24/05/2019  Novartis, Bayer, Suzuken Group 01/07/2020 

Tecartus | Non-

Hodgkin lymphoma 

(NHL) 

B-lymphocyte antigen CD19 

CAR-T cell therapy 
24/07/2020  Gilead Sciences 31/12/2020 

Lenmeldy | 

Metachromatic 

leukodystrophy 

Arylsulfatase A (ARSA) gene 

therapy 
18/03/2024  Kyowa Kirin, AGC Biologics 31/12/2020 

Skysona | Other 

metabolic indications 
Adrenoleukodystrophy (ALD) 

transduced CD34 cell therapy 
16/09/2022  bluebird bio 21/07/2021 

Abecma | Multiple 

myeloma 
Anti-B-cell maturation antigen 

(BCMA) CAR-T cell therapy 
26/03/2021  bluebird bio, Bristol Myers 

Squibb, 2Seventy Bio 
18/08/2021 

Luxturna | Leber's 

congenital amaurosis 
Retinoid isomerohydrolase 

gene therapy 
19/12/2017  The Children's Hospital of 

Philadelphia, Roche, Novartis 
31/12/2021 

Breyanzi | Non-

Hodgkin lymphoma 

(NHL) 

B-lymphocyte antigen CD19 

CAR-T cell therapy 
05/02/2021  Seattle Children’s, Bristol Myers 

Squibb, Fred Hutchinson 

Cancer Research Center 

04/07/2022 
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Upstaza | Other 

metabolic indications 
Aromatic-L-amino-acid 

decarboxylase (AADC) gene 

transference 

13/11/2024 93% National Taiwan University, PTC 

Therapeutics 
18/10/2022 

Ebvallo | Epstein-Barr 

virus (EBV) infections 
Anti-Epstein-barr virus (EBV) 

antigen cytotoxic T-

lymphocyte (CTL) cell therapy 

20/03/2025 93% Memorial Sloan-Kettering 

Cancer Center, Atara 

Biotherapeutics, Pierre Fabre 

31/03/2023 

Hemgenix | 

Haemophilia B 
Coagulation factor IX gene 

therapy 
22/11/2022  University of Padua, CSL, 

uniQure 
30/06/2023 

Roctavian | 

Haemophilia A 
Coagulation factor VIII gene 

therapy 
29/06/2023  St. Jude Children's Research 

Hospital, BioMarin 

Pharmaceutical 

30/08/2023 

Carvykti | Multiple 

myeloma 
Anti-B-cell maturation antigen 

(BCMA) CAR-T cell therapy 
28/02/2022  Johnson & Johnson, Legend 

Biotech 
31/03/2024 

Tecartus | Leukaemia, 

acute lymphocytic 

(ALL) 

B-lymphocyte antigen CD19 

CAR-T cell therapy 
01/10/2021  Gilead Sciences 31/08/2024 

Beqvez | Haemophilia 

B 
Coagulation factor IX gene 

therapy 
25/04/2024  The Children's Hospital of 

Philadelphia, 

Roche, Pfizer 

31/12/2024 

Vyjuvek | 

Epidermolysis bullosa 

(EB) 

Collagen type VII alpha 1 

chain (COL7A1) gene 

transference 

19/05/2023  Krystal Biotech 31/12/2024 

SRP-9003 | Limb-girdle 

muscular dystrophy 
Sarcoglycan beta (SGCB) 

gene transference 
31/12/2025 51% Nationwide Children's Hospital, 

Sarepta Therapeutics 
31/12/2024 

Upstaza | Other 

neurological 

indications 

Aromatic-L-amino-acid 

decarboxylase (AADC) gene 

transference 

31/12/2025 93% National Taiwan University, PTC 

Therapeutics 
31/12/2024 

RP-L102 | Anaemia, 

other 
Fanconi anaemia 

complementation group A 

(FANCA) gene transference 

31/12/2026 97% Rocket Pharmaceuticals 31/12/2024 

Amtagvi | Melanoma Programmed cell death 

protein 1 (PD1) inhibitor; 

Tumour infiltrating 

lymphocytes (TIL) cell therapy 

16/02/2024  Iovance Biotherapeutics 30/06/2025 

Elevidys | Duchenne 

muscular dystrophy 
Dystrophin synthesis gene 

therapy 
22/06/2023  Sarepta Therapeutics, Roche, 

Chugai Pharmaceutical 
31/12/2025 

Pz-cel | Epidermolysis 

bullosa (EB) 
Collagen type VII alpha 1 

chain (COL7A1) gene 

transference 

31/12/2024 81% Stanford University, Abeona 

Therapeutics 
31/12/2025 

Revascor | Chronic 

heart failure (CHF) 
Mesenchymal stem cell 

therapy 
31/12/2025 15% Mesoblast 31/12/2025 

Lumevoq | Leber's 

hereditary optic 

neuropathy 

NADH-ubiquinone 

oxidoreductase chain 4 gene 

therapy 

28/05/2025 5% GenSight Biologics 31/12/2025 

DTX301 | Urea cycle 

disorders 
Ornithine transcarbamylase 

(OTC) gene transference 
31/12/2026 57% Ultragenyx Pharmaceutical 31/12/2025 

DTX401 | Other 

metabolic indications 
Glucose-6-phosphatase gene 

transference 
31/12/2025 91% Ultragenyx Pharmaceutical 31/12/2025 

SB-525 | Haemophilia 

A 
Coagulation factor VIII gene 

therapy 
01/07/2025 78% Sangamo Therapeutics, Pfizer 31/12/2025 

AAV-GAD | 

Parkinson's disease 
Glutamic acid decarboxylase 

(GAD) gene transference 
31/12/2026 7% MeiraGTx 31/12/2025 

ECT-001 | Multiple 

myeloma 
Stem cell stimulant  93% ExCellThera 31/12/2025 
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Kresladi | Other 

immune indications 
Leukocyte adhesion 

deficiency (LAD) I gene 

therapy 

31/01/2025 81% Rocket Pharmaceuticals 31/12/2026 

Afami-cel | Soft tissue 

sarcoma 
Melanoma antigen A4 

(MAGE-A4) protein cell 

therapy 

02/08/2024 97% Adaptimmune 31/12/2026 

Obe-cel | Leukaemia, 

acute lymphocytic 

(ALL) 

B-lymphocyte antigen CD19 

CAR-T cell therapy 
16/11/2024 97% University College London, 

Autolus Therapeutics 
31/12/2026 

Deramiocel | 

Duchenne muscular 

dystrophy 

Cardiac stem cell therapy 30/07/2025 60% The Johns Hopkins University, 

Lonza, Nippon Shinyaku, 

Capricor Therapeutics 

31/12/2026 

UX701 | Wilson's 

disease 
Copper-transporting ATPase 

beta (ATP7B) gene 

transference 

31/12/2026 52% The University of Pennsylvania, 

Ultragenyx Pharmaceutical 
31/12/2026 

OTL-203 | Hurler's 

syndrome 

(Mucopolysaccharidosi

s I or MPS I) 

Alpha-L-Iduronidase gene 

transference 
31/12/2026 56% Kyowa Kirin 31/12/2026 

OCU400 | Retinitis 

pigmentosa 
Nuclear receptor subfamily 2 

group E member 3 (NR2E3) 

gene transference 

31/12/2026 74% Ocugen 31/12/2026 

IMC-F106C | 

Melanoma 
Anti-preferentially expressed 

antigen in melanoma 

(PRAME) T-cell stimulant; T-

Cell stimulant 

31/12/2026 71% Immunocore 31/12/2026 

SPK-8011 | 

Haemophilia A 
Coagulation factor VIII gene 

therapy 
31/12/2026 20% Roche 31/12/2026 

jCell | Retinitis 

pigmentosa 
Human retinal progenitor cell 

therapy 
07/08/2029 5% jCyte, Santen Pharmaceutical 31/12/2026 

LN-145 | Cervical 

cancer 
Tumour infiltrating 

lymphocytes (TIL) cell therapy 
31/12/2026 3% Iovance Biotherapeutics 31/12/2026 

AAV-RPE65 | Leber's 

congenital amaurosis 
Retinoid isomerohydrolase 

gene therapy 
31/12/2026 0% University College London, 

MeiraGTx 
31/12/2026 

AMT-130 | 

Huntington's disease 
Huntingtin (HTT) RNAi 

therapeutic; microRNA gene 

transference 

31/12/2026 31% uniQure 31/12/2026 

TSHA-118 | Batten 

disease 
Ceroid-lipofuscinosis, 

neuronal 1 (CLN1) gene 

transference 

31/12/2026 57% The University of North 

Carolina, Taysha Gene 

Therapies, Abeona 

Therapeutics 

31/12/2026 

MB-104 | Multiple 

myeloma 
Universal Chimeric Antigen 

Receptor T (U-CART) cell 

therapy 

 1% Fortress Biotech, Mustang Bio 31/12/2026 

TSC-101 | Leukaemia, 

acute lymphocytic 

(ALL) 

T-cell receptor (TCR) cell 

therapy 
31/12/2026 10% TScan Therapeutics 31/12/2026 

RGX-314 | Wet age-

related macular 

degeneration (AMD) 

Vascular endothelial growth 

factor receptor (VEGFR) A 

antagonist 

31/12/2025 80% REGENXBIO, AbbVie 31/12/2027 

OpRegen | Dry age-

related macular 

degeneration (AMD) 

Retinal pigmented epithelial 

(RPE) cell therapy 
31/12/2026 2% Roche, Lineage Cell 

Therapeutics 
31/12/2027 

AVR-RD-02 | 

Gaucher's disease 
Glucocerebrosidase (GCase) 

gene transference 
31/12/2026 19% Lund University, Tectonic 

Therapeutic 
31/12/2027 
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RP-L301 | Anaemia, 

haemolytic 
Pyruvate kinase (PK) gene 

therapy; Pyruvate kinase (PK) 

gene transference 

31/12/2027 32% Rocket Pharmaceuticals 31/12/2027 

RP-A501 | General 

cardiovascular 

indications 

Lysosome-associated 

membrane glycoprotein 2 

(LAMP2) gene transference 

31/12/2026 30% University of California, Rocket 

Pharmaceuticals 
31/12/2027 

SRP-9004 | Limb-girdle 

muscular dystrophy 
Sarcoglycan alpha (SGCA) 

gene transference 
31/12/2026 1% Sarepta Therapeutics 31/12/2027 

KB105 | 

Mucocutaneous 

dryness 

Transglutaminase (TG) 1 

gene transference 
31/12/2026 21% Krystal Biotech 31/12/2027 

BBP-631 | Adrenal 

hyperplasia, congenital 
Steroid 21-hydroxylase gene 

transference 
31/12/2026 27% BridgeBio Pharma 31/12/2027 

Cemacabtagene 

Ansegedleucel | Non-

Hodgkin lymphoma 

(NHL) 

B-lymphocyte antigen CD19 

CAR-T cell therapy 
05/09/2027 53% Allogene Therapeutics, Servier 31/12/2027 

PBFT02 | Dementia, 

frontotemporal 
Granulin precursor (GRN) 

gene transference 
31/12/2027 33% Passage Bio 31/12/2027 

ADP-A2M4CD8 | Head 

& neck cancers 
Melanoma antigen A4 

(MAGE-A4) protein cell 

therapy; T-cell surface 

glycoprotein CD8 stimulant 

31/12/2027 2% Adaptimmune, Galapagos 31/12/2027 

ADP-A2M4CD8 | 

Bladder cancer 
Melanoma antigen A4 

(MAGE-A4) protein cell 

therapy; T-cell surface 

glycoprotein CD8 stimulant 

31/12/2027 4% Adaptimmune 31/12/2027 

ADP-A2M4CD8 | 

Ovarian cancer 
Melanoma antigen A4 

(MAGE-A4) protein cell 

therapy; T-cell surface 

glycoprotein CD8 stimulant 

31/12/2026 15% Adaptimmune 31/12/2027 

AOC 1020 | 

Facioscapulohumeral 

muscular dystrophy 

(FSHD) 

Double homeobox 4 (DUX4) 

regulator 
31/12/2027 57% Avidity Biosciences 31/12/2027 

ALLO-715 | Multiple 

myeloma 
Anti-B-cell maturation antigen 

(BCMA) CAR-T cell therapy 
31/12/2027 15% Allogene Therapeutics, 

Overland Pharmaceuticals, 

Allogene Overland Biopharm 

31/12/2027 

AUTO4 | Non-Hodgkin 

lymphoma (NHL) 
T-cell receptor beta chain 1 

(TRBC1) CAR-T cell therapy 
12/12/2027 10% Autolus Therapeutics 31/12/2027 

KB301 | Other 

dermatoses 
Collagen type III receptor 

stimulant 
31/12/2027 3% Krystal Biotech 31/12/2027 

PRGN-3006 | 

Leukaemia, acute 

myeloid (AML) 

Anti-CD33 CAR-T cell therapy 31/12/2026 21% Precigen 31/12/2027 

PRGN-3005 | Ovarian 

cancer 
Anti-mucin-16 (MUC16) CAR-

T cell therapy 
31/12/2026 3% Precigen 31/12/2027 

AUTO1/22 | 

Leukaemia, acute 

lymphocytic (ALL) 

B-lymphocyte antigen CD19 

CAR-T cell therapy; B-

lymphocyte antigen CD22 

CAR-T cell therapy 

31/12/2027 2% University College London, 

BioNTech, Autolus Therapeutics 
31/12/2027 

AUTO8 | Multiple 

myeloma 
Anti-B-cell maturation antigen 

(BCMA) CAR-T cell therapy 
31/12/2027 2% Autolus Therapeutics (Listed: 

$928m): Organic 
31/12/2027 

TSC-100 | General 

blood malignancies 
T-cell receptor (TCR) cell 

therapy 
 16% TScan Therapeutics 31/12/2027 
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Obe-cel | Leukaemia, 

chronic lymphocytic 

(CLL) 

B-lymphocyte antigen CD19 

CAR-T cell therapy 
31/12/2027 4% University College London, 

Autolus Therapeutics 
31/12/2027 

bota-vec | Retinitis 

pigmentosa 
Retinitis pigmentosa GTPase 

regulator (RPGR) gene 

transference 

31/12/2025 57% Johnson & Johnson, MeiraGTx 31/12/2028 

SPK-3006 | Pompe's 

disease 
Alpha-glucosidase regulator 31/12/2027 4% Généthon, Roche 31/12/2028 

Trem-cel | Leukaemia, 

acute myeloid (AML) 
Haematopoietic cell 

replacement 
31/12/2027 73% Vor Biopharma 31/12/2028 

PR006 | Dementia, 

frontotemporal 
Granulin precursor (GRN) 

gene transference 
31/12/2028 8% Eli Lilly 31/12/2028 

PBGM01 | Other 

lysosomal storage 

disorders 

Beta-galactosidase-1 (GLB1) 

gene transference 
31/12/2026 30% Passage Bio 31/12/2028 

BNT211 | Ovarian 

cancer 
Anti-claudin 6 (CLDN6) CAR-

T cell therapy 
31/12/2027 1% BioNTech 31/12/2028 

BEAM-201 | 

Leukaemia, acute 

lymphocytic (ALL) 

Anti-CD7 CAR-T cell therapy 31/12/2028 12% Beam Therapeutics 31/12/2028 

FLT201 | Gaucher's 

disease 
Glucocerebrosidase (GCase) 

gene therapy 
 1% Syncona 31/12/2028 

VCAR33 | Leukaemia, 

acute myeloid (AML) 
Anti-CD33 CAR-T cell therapy 31/12/2027 31% Vor Biopharma 31/12/2028 

BNT211 | Solid tumour 

indications 
Anti-claudin 6 (CLDN6) CAR-

T cell therapy 
 3% BioNTech 31/12/2028 

BEAM-201 | 

Leukaemia, acute 

myeloid (AML) 

Anti-CD7 CAR-T cell therapy 31/12/2028 1% Beam Therapeutics 31/12/2028 

SGT-003 | Duchenne 

muscular dystrophy 
Dystrophin synthesis gene 

therapy 
31/12/2028 39% Solid Biosciences 31/12/2028 

Rapcabtagene 

Autoleucel | Systemic 

lupus erythematosus 

(SLE) 

B-lymphocyte antigen CD19 

CAR-T cell therapy 
31/12/2028 8% Novartis 31/12/2028 

UCART22 | 

Leukaemia, acute 

lymphocytic (ALL) 

Anti-CD22 CAR-T cell therapy 31/12/2027 0% Cellectis 31/12/2028 

P-BCMA-ALLO1 | 

Multiple myeloma 
Anti-B-cell maturation antigen 

(BCMA) CAR-T cell therapy 
31/12/2028 4% Poseida Therapeutics, Roche, 

Amgen 
31/12/2028 

DeTIL-0255 | Non-

small cell lung cancer 

(NSCLC) 

E3 ubiquitin ligase Cbl-b 

inhibitor; Tumour infiltrating 

lymphocytes (TIL) cell therapy 

31/12/2028 15% Nurix Therapeutics 31/12/2028 

Sepofarsen | Leber's 

congenital amaurosis 
Centrosomal protein 290 

(CEP290) RNAi therapeutic 
31/12/2029 40% ProQR Therapeutics, 

Laboratoires Théa 
31/12/2029 

LN-145 | Non-small cell 

lung cancer (NSCLC) 
Tumour infiltrating 

lymphocytes (TIL) cell therapy 
17/02/2029 14% Iovance Biotherapeutics 31/12/2029 

KYV-101 | Systemic 

lupus erythematosus 

(SLE) 

B-lymphocyte antigen CD19 

CAR-T cell therapy 
31/12/2028 26% National Institutes of Health, 

Kyverna Therapeutics 
31/12/2029 

KYV-101 | Myasthenia 

gravis 
B-lymphocyte antigen CD19 

CAR-T cell therapy 
31/12/2028 81% National Institutes of Health, 

Kyverna Therapeutics 
31/12/2029 

KB407 | Cystic fibrosis 

(CF) 
Cystic fibrosis 

transmembrane conductance 

regulator (CFTR) corrector; 

31/12/2028 32% Krystal Biotech 31/12/2029 
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Cystic fibrosis 

transmembrane conductance 

regulator (CFTR) regulator 

CB-012 | Leukaemia, 

acute myeloid (AML) 
Anti-C-type lectin domain 

family 12 member A 

(CLEC12A) T-cell stimulant 

31/12/2027 2% Caribou Biosciences 31/12/2029 

RP-A601 | 

Hypertrophic 

cardiomyopathy 

Unclassified 31/12/2028 23% Rocket Pharmaceuticals 31/12/2029 

Obe-cel | Non-Hodgkin 

lymphoma (NHL) 
B-lymphocyte antigen CD19 

CAR-T cell therapy 
31/12/2029 5% University College London, 

Autolus Therapeutics 
31/12/2030 

KYV-101 | 

Scleroderma 
B-lymphocyte antigen CD19 

CAR-T cell therapy 
31/12/2029 12% National Institutes of Health 

(NIH; USA), Kyverna 

Therapeutics 

31/12/2030 

CB-010 | Non-Hodgkin 

lymphoma (NHL) 
B-lymphocyte antigen CD19 

CAR-T cell therapy 
19/09/2027 75% Caribou Biosciences, Intellia 

Therapeutics 
31/12/2030 

CB-011 | Multiple 

myeloma 
Anti-B-cell maturation antigen 

(BCMA) CAR-T cell therapy 
31/12/2026 54% Caribou Biosciences 31/12/2030 

TSC-200 | Head & 

neck cancers 
T-cell receptor (TCR) cell 

therapy 
31/12/2026 1% TScan Therapeutics 31/12/2030 

TSC-200 | Melanoma T-cell receptor (TCR) cell 

therapy 
31/12/2029 5% TScan Therapeutics 31/12/2030 

TSC-200 | Cervical 

cancer 
T-cell receptor (TCR) cell 

therapy 
31/12/2029 9% TScan Therapeutics 31/12/2030 

DeTIL-0255 | 

Melanoma 
E3 ubiquitin ligase Cbl-b 

inhibitor; Tumour infiltrating 

lymphocytes (TIL) cell therapy 

31/12/2028 9% Nurix Therapeutics 31/12/2030 

KYV-101 | Multiple 

sclerosis (MS) 

unspecified 

B-lymphocyte antigen CD19 

CAR-T cell therapy 
 49% Kyverna Therapeutics 31/12/2031 

DeTIL-0255 | Head & 

neck cancers 
E3 ubiquitin ligase Cbl-b 

inhibitor; Tumour infiltrating 

lymphocytes (TIL) cell therapy 

30/11/2029 8% Nurix Therapeutics 31/12/2031 

Source: Our elaborations based on Evaluate Pharma data. 
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